Wilder's colleague, paediatrician Mynie Gustav Peterman, later formulated the classic diet, with a ratio of one gram of protein per kilogram of body weight in children, 10–15 g of carbohydrate per day, and the remainder of calories from fat. Peterman's work in the 1920s established the techniques for induction and maintenance of the diet. Peterman documented positive effects (improved alertness, behaviour, and sleep) and adverse effects (nausea and vomiting due to excess ketosis). The diet proved to be very successful in children: Peterman reported in 1925 that 95% of 37 young patients had improved seizure control on the diet and 60% became seizure-free. By 1930, the diet had also been studied in 100 teenagers and adults. Clifford Joseph Barborka, Sr., also from the Mayo Clinic, reported that 56% of those older patients improved on the diet and 12% became seizure-free. Although the adult results are similar to modern studies of children, they did not compare as well to contemporary studies. Barborka concluded that adults were least likely to benefit from the diet, and the use of the ketogenic diet in adults was not studied again until 1999.[10][14]

Around this time, Bernarr Macfadden, an American exponent of physical culture, popularised the use of fasting to restore health. His disciple, the osteopathic physician Dr. Hugh William Conklin of Battle Creek, Michigan, began to treat his epilepsy patients by recommending fasting. Conklin conjectured that epileptic seizures were caused when a toxin, secreted from the Peyer's patches in the intestines, was discharged into the bloodstream. He recommended a fast lasting 18 to 25 days to allow this toxin to dissipate. Conklin probably treated hundreds of epilepsy patients with his "water diet" and boasted of a 90% cure rate in children, falling to 50% in adults. Later analysis of Conklin's case records showed 20% of his patients achieved freedom from seizures and 50% had some improvement.[10]


Therapeutics: The ketogenic diet was originally developed in the 1920s as an alternative therapeutic option to treat children suffering from drug-resistant epilepsy. Since its inception, the utilization of the ketogenic diet has expanded as a therapeutic treatment for many other conditions such as Alzheimer’s disease, Parkinson’s disease, GLUT-1 deficiency syndrome, Bipolar disorders and even cancer.

It seems strange that a diet that calls for more fat can raise “good” cholesterol and lower “bad” cholesterol, but ketogenic diets are linked to just that. It may be because the lower levels of insulin that result from these diets can stop your body from making more cholesterol. That means you’re less likely to have high blood pressure, hardened arteries, heart failure, and other heart conditions. It's unclear, however; how long these effects last.
You’ve probably heard about the low carb, high fat diet that’s so popular among actors and models, and with good reason: low carb diets offer proper nourishment with whole foods, while keeping your body burning fat for fuel. This is a great way to be, as it makes fat loss largely effortless! But where does this “ketogenic” word fit into the picture?
But there is evidence that low-carb diets may increase metabolism, according to a paper published November 14 in BMJ. Researchers found that overweight adults who lowered carbohydrates and added more fat into their diets burned about 250 calories more each day than people on high-carb, low-fat diets. The study is impressive because it's the largest, most expensive, and controlled study of its kind.
Many ketogenic dieters also swear by MCT oil. (MCT simply stands for medium chain triglycerides.) MCT's energy-sustaining powers can be explained as follows: When MCT oil is metabolized in the body, it behaves more like a carbohydrate than a fat. Unlike other fats, MCT oil does not go through the lymphatic system. Instead, it is transported directly to the liver where it is metabolized so it releases energy like a carbohydrate and creates lots of ketones (which can be used for fuel) in the process.

The ketogenic diet is calculated by a dietitian for each child. Age, weight, activity levels, culture, and food preferences all affect the meal plan. First, the energy requirements are set at 80–90% of the recommended daily amounts (RDA) for the child's age (the high-fat diet requires less energy to process than a typical high-carbohydrate diet). Highly active children or those with muscle spasticity require more food energy than this; immobile children require less. The ketogenic ratio of the diet compares the weight of fat to the combined weight of carbohydrate and protein. This is typically 4:1, but children who are younger than 18 months, older than 12 years, or who are obese may be started on a 3:1 ratio. Fat is energy-rich, with 9 kcal/g (38 kJ/g) compared to 4 kcal/g (17 kJ/g) for carbohydrate or protein, so portions on the ketogenic diet are smaller than normal. The quantity of fat in the diet can be calculated from the overall energy requirements and the chosen ketogenic ratio. Next, the protein levels are set to allow for growth and body maintenance, and are around 1 g protein for each kg of body weight. Lastly, the amount of carbohydrate is set according to what allowance is left while maintaining the chosen ratio. Any carbohydrate in medications or supplements must be subtracted from this allowance. The total daily amount of fat, protein, and carbohydrate is then evenly divided across the meals.[37] 
×